Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11662-11668, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064458

RESUMO

The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.

2.
J Colloid Interface Sci ; 633: 177-188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36446210

RESUMO

In this work, different BiOBr powders (without and with Zn doping) were prepared. Their specific properties and photocatalytic performance were studied. Zn doped BiOBr showed higher carrier transportation ability, beneficial to high performance photocatalysis. Further analysis and theoretical calculations unveiled that Zn doping resulted in more dispersive energy band structure with improved oxygen vacancy (OV) generation due to lattice distortion. OV acted as trap centers, playing dominant role in carrier transportation enhancement, which also synergized with more dispersive energy band due to Zn doping, improving carrier separation and transfer. Besides, Zn doping would further strengthen trapping effect under OV existence, stimulating synergistic enhancement to spatial charge separation and transfer with OV. With synergy of Zn doping and OV, Zn doped samples produced 1.75 times higher CH4 generation during gas-solid photocatalytic reduction of CO2 under visible light, testifying successful conducting of Zn doping improved photocatalytic capacity on BiOBr.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889647

RESUMO

Crystal facet engineering and nonmetal doping are regarded as effective strategies for improving the separation of charge carriers and photocatalytic activity of semiconductor photocatalysts. In this paper, we developed a facial method for fabricating oxygen-deficient Br-doped BiOCl nanosheets with dominating {001} facets through a traditional hydrothermal reaction and explored the impact of the Br doping and specific facets on carrier separation and photocatalytic performance. The morphologies, structures, and optical and photocatalytic properties of the obtained products were characterized systematically. The BiOCl samples prepared by the hydrothermal reaction exhibited square-like shapes with dominating {001} facets. Photodeposition results indicated that photoinduced electrons preferred to transfer to {001} facets because of the strong internal static electric fields in BiOCl nanosheets with dominating {001} facets. Br doping not only contributed to the formation of impurity energy levels that could promote light absorption but introduced a large number of surface oxygen vacancies (VO) in BiOCl photocatalysts, which was beneficial for photocatalytic performance. Moreover, the photocatalytic activities of these products under visible light were tested by degradation of rhodamine B (RhB). Because of the synergistic effect of the dominating {001} facets, Br doping, and rich VO, oxygen-deficient Br-doped BiOCl nanosheets exhibited improved carrier separation, visible light absorption, and photocatalytic efficiency.

4.
Chemosphere ; 307(Pt 1): 135663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35835240

RESUMO

BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main reason of photocatalytic performance promotion due to changed facet exposure and proportion under self-assembling. Theory and experimental analysis manifested that synergistic facet stimulated Z scheme transition in samples with lower (001) facet proportion, which provided favorable condition of 1O2 generation and simultaneously generated prominent charge separation. This work unveiled the facet synergy dominant photocatalytic performance improvement in self-assembling system of BiOCl and verified decisive role of facet proportion in constructing Z-scheme facet junction, which also prompted possibility of improving 1O2 generation through facet engineering under self-assembling.

5.
RSC Adv ; 10(2): 1120-1126, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494465

RESUMO

Smart surfaces promote the fundamental understanding of wetting and are widely used in practical applications for energy and water collection. Light-induced switchable wettability facilitated by ZnO coatings, for instance, was developed for liquid manipulation at the surface. However, the transition of wetting states was reported to follow a hydrophobic-hydrophilic cycle in an hour, which is very long and may limit its future applications. We recently discovered that the cycle of the wetting state transitions on inorganic coatings can be shortened to less than 100 seconds by using ALD-coated ZnO on a pillared surface. However, the mechanisms are still unclear. Here, we investigated the effects of coating thickness on the transition speed and found that it significantly depended on the thickness of the coating with the optimal thickness less than 50 nm. We found that the minimum critical time for a wetting state transition cycle was less than 50 seconds with a thickness of 40 nm. Although the transition time of surfaces with coatings over 70 nm thickness remained constant at 10 min for a cycle, it was shorter than those of other deposition techniques for a coarse surface. Here, we propose a "penetration-diffusion" model to explain the fast and thickness-dependent wetting transitions. Our study may provide a new paradigm for fast wetting transition surfaces with cycle time within tens of seconds using a homogeneous thin layer coated on a rough surface.

6.
Biosens Bioelectron ; 150: 111886, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784313

RESUMO

Photo-corrosion is a common phenomenon observed in the photocatalytic semiconductor materials, which can seriously harm the photoelectric properties and performances in the energy applications. However, in this paper, we demonstrated that the photo-corrosion effects can be used for the microfabrication of conductive structures on a photocatalytic film like zinc oxide (ZnO), named as "photoetching". Our results demonstrated that microstructures can be prepared within seconds with a precision at an order of tens of micrometers using our current devices. Different from the previous work, the etching process was achieved free of conducting layer under the ZnO film, avoiding the short-circuit of the conductive micro-patterns and enabling the use for the impedance sensing. We demonstrated the fabricated ZnO microelectrode pairs can work for the electrochemical impedance measurements like assessment of hemostasis integrated with a microfluidic chip. Compared to the noble metal microelectrodes, the ZnO conductive microelectrodes can be fabricated within seconds and the low costs make it possible as a disposable diagnostic device. Besides, the photoetching technique can be performed without a cleanroom reducing the technical barriers, possibly helpful for the low resources areas. We believe the simplicity of device, low costs and fast fabrication can be useful in the relevant fields such as biomedical and energy harvesting, especially for low resources areas.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Hemostasia , Microtecnologia/métodos , Óxido de Zinco/química , Testes de Coagulação Sanguínea/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Humanos , Microeletrodos , Microtecnologia/instrumentação
7.
ACS Appl Mater Interfaces ; 10(22): 19182-19188, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29767948

RESUMO

Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...